
ACM International Collegiate Programming Contest 2003/04
Russian Teams Meeting in Petrozavodsk, Summer 2003

KOTEHOK’s Contest, Sunday, August 31, 2003

Problem A. Circles On The Toral Screen
Input file: circles.in

Output file: circles.out

Time limit: 1 second
Memory limit: 64 megabytes

Peter’s computer is attached to screen 256 × 256. This screen has very unusual form. It is a tore!
That’s so beatiful! If his window is too large to be displayed, it just covers itself and the operating system
allows to switch between the first part of the window and the second one.

Now Peter is writing a graphical editor for this screen. He decided to use the screen form in a very
special way in his editor. Of course, if we go, for example, from point (255, 255) to the right direction,
we will come to point (0, 255). So Peter decided to allow any possible integer values of coordinates so
he will be able to draw very long curves without any checks as if he would have a very-very long screen.
So, getting point coordinates (x, y), the editor always take them modulo 256. Note that it must use the
positive remainder, for example, point (−239,−17) corresponds to the physical point (17, 239).

Now Peter has decided to implement circles drawing procedure in his editor. He thought for a very
long time about it. Now he knows that the representation of the circle on the (usual flat, but possibly
very-very long) screen is a non-empty set of points (x, y) with two conditions satisfied:

• Exactly two of eight neighbours of any fixed point from this set (x, y) belong to this set.

• The second condition is much harder to explain. Let us fix any point from the set (x, y). Denote
with M the set of all its eight neighbours except the neighbours that belong to the representation.
Let us include the point (x, y) itself to M also, so M will always contain seven points. The point
(x, y) must be the true nearest point to the circle from this set. That is, the point (x, y) gives a
true minimum to the absolute value of the difference of the Euclid distance of the point to the
center of the circle and the radius of the circle (i. e. the function |

√
(x− x0)2 + (y − y0)2 − r| for

the point (x, y) must be less than the value of this function for all other points of M , where (x0, y0)
are coordinates of the center of the circle).

Now Peter asks you to help him to implement the creation of this representation to display it on his
toral screen in his editor. The screen is empty at the beginning. Your program will read descriptions of
the circles from the input file and draw them on the screen. If it is not possible to build representation
of any of the given circles, your program must detect this fact.

Input
The first line of the input file contains the number of circles to be drawn 1 ≤ K ≤ 1000. The next K

lines contain the circles descriptions. Each circle is described by three numbers x, y and r — coordinates
of the center and the radius of the circle. Coordinates are integers with absolute value not greater than
108, and radius is a non-negative integer which does not exceed 107. Also it is always guaranteed that
the total sum of all radii does not exceed 107.

Output
If there were circles which do not have representation, the first line must contain message “Circles

without representation were detected!”. Then l lines must follow, each of which must correspond
to one circle without representation in order they appear in input file (l is the total number of circles
without representation). These lines must have format “Unable to build circle x y r”. All messages
are to be displayed without quotes.

In the other case, the file must contain the contents of the screen. The screen is represented by 256
lines of 256 characters each. You must use color (i mod 10) for i-th circle. For example, first circle from
the input file must be displayed with the color ‘1’, hundredth — with color ‘0’, and two hundred thirty
ninth — with ‘9’. The circles must be drawn in order they appear. For pixels which were left empty, use
symbol ‘.’. Note that x coordinate grows right and the y coordinate grows down.

Page 1 of 9

ACM International Collegiate Programming Contest 2003/04
Russian Teams Meeting in Petrozavodsk, Summer 2003

KOTEHOK’s Contest, Sunday, August 31, 2003

Note
The dots in ends of lines of the example output are removed for paper saving purposes. Your program

must output lines with exact length of 256 characters.

Example
circles.in circles.out

2

5 2 3

10 10 8

...1...1

..1.....1

..1.....22222

..1...221....22

...1.2.1.......2

....211.........2

...2.............2

...2.............2

..2...............2

..2...............2

..2...............2

..2...............2

..2...............2

...2.............2

...2.............2

....2...........2

.....2.........2

......22.....22

........22222

236 lines of 256 dots follow
....111

Page 2 of 9

ACM International Collegiate Programming Contest 2003/04
Russian Teams Meeting in Petrozavodsk, Summer 2003

KOTEHOK’s Contest, Sunday, August 31, 2003

Problem B. How Many Programs?
Input file: programs.in

Output file: programs.out

Time limit: 7 seconds
Memory limit: 64 megabytes

Little Jaina loves programming. She already knows N programming constructions! Now Jaina thinks
how many programs of a given length L she can compose using these constructions. Help her to count
them!

Note that Jaina ignores any spaces and blank lines in her program and counts only printable charac-
ters. Also Jaina considers different two programs if they are equal as strings, but different sequences of
constructions were used to create them.

Of course Jaina does not require that the program must compile. She will learn about compilers on
the next lesson.

Input
The first line of the input file contains number of constructions 1 ≤ N ≤ 1000. The next N lines

contain constructions themselves. Length of any of these lines does not exceed 255 characters. If a
construction occures more than once, all occurences are considered different, so there are exactly N
different constructions Jaina knows. The strings contain only characters with ASCII codes from 32 to
126. Jaina wants that all blanks in the strings must be ignored.

The last line of the input contains a single integer 1 ≤ L ≤ 1000.

Output
Output the number of different programs Jaina can compose.

Example
programs.in programs.out

3

begin

clrscr

end

17

20

Page 3 of 9

ACM International Collegiate Programming Contest 2003/04
Russian Teams Meeting in Petrozavodsk, Summer 2003

KOTEHOK’s Contest, Sunday, August 31, 2003

Problem C. The Middlest Number
Input file: midnum.in

Output file: midnum.out

Time limit: 9 seconds
Memory limit: 64 megabytes

One can perform the following operations to get the middlest number of a given sequence a1, a2, . . . , an
written on the blackboard. He must select the minimal number amin, the maximal number amax, erase
them and write down amin+amax

2 . After repeating this n− 1 times, there will be only one number on the
blackboard. We will call it the middlest number.

Your task is to find the middlest number of a given sequence of integers.

Input
The first line contains integer 1 ≤ n ≤ 239017. The next n lines contain numbers ai.

Output
Output the middlest number of the given sequence with six digits after the decimal point.

Example
midnum.in midnum.out

3

2

3

9

4.250000

Page 4 of 9

ACM International Collegiate Programming Contest 2003/04
Russian Teams Meeting in Petrozavodsk, Summer 2003

KOTEHOK’s Contest, Sunday, August 31, 2003

Problem D. Logical Expression Calculator
Input file: logcalc.in

Output file: logcalc.out

Time limit: 9 seconds
Memory limit: 64 megabytes

Your task is to implement the calculator of logical expressions. The operations allowed are (from
highest priority to lowest):

• ‘~’ (not). Unary operation, which converts true to false and vice versa.

• ‘&’ (and). Binary operation which is true only if both operands are true.

• ‘|’ (or). Binary operation which is true if at least one of operands is true.

• ‘^’ (xor — exclusive or). Binary operation which is true if exactly one of operands is true.

The expression can contain variables and boolean constants 0 (false) and 1 (true). There are 52
different variables allowed: capital and small English letters. Parentheses are also allowed with standard
effect.

Input
The first line of the input contains an expression. The next line contains the number of sets of values

of variables for which the expression must be calculated (1 ≤ M ≤ 4063). The next M lines contain
52 numbers each — the values of all variables ‘A’. . . ‘Z’ and ‘a’. . . ‘z’. The length of expression does not
exceed 50000 characters.

Output
For each set of input data output the value of expression on a single line. Output 0 if expression is

false and 1 otherwise.

Example
logcalc.in logcalc.out

A&B|C

4

1 1 0 0 0 ...47 zeros follow...
1 0 1 0 0 ...47 zeros follow...
1 0 0 0 0 ...47 zeros follow...
0 0 0 0 0 ...47 zeros follow...

1

1

0

0

Page 5 of 9

ACM International Collegiate Programming Contest 2003/04
Russian Teams Meeting in Petrozavodsk, Summer 2003

KOTEHOK’s Contest, Sunday, August 31, 2003

Problem E. Travelling Salesman Returns!
Input file: salesman.in

Output file: salesman.out

Time limit: 10 seconds
Memory limit: 64 megabytes

Travelling Salesman plans to return to the Alpha Centauri system! All the people wait it! They want
new best goods from other systems!

But the Salesman as usual wants to minimize the travel expenses. He selects any starting planet, flies
there on the intergalactic spaceship, visits all planets in the system in order which minimizes the total
cost, and then flies on the intergalactic spaceship away. Of course he does not want to visit any planet
more than once. Your task is to calculate the optimal route for the Salesman. The people can wait no
longer!

Input
The Alpha Centauri system contains n planets. This number is written on the first line of the input

file (1 ≤ n ≤ 19). The next n lines contain n numbers each: j-th number of the i-th line is the travel
cost from i-th planet to j-th. The numbers are separated by spaces. Numbers aii should be ignored. All
numbers are positive integers which do not exceed 108.

Output
Output the minimal total cost in the first line. In the second line output n numbers — the route on

which the total cost is minimized.

Example
salesman.in salesman.out

3

8 1 6

3 5 7

4 9 2

5

3 1 2

Page 6 of 9

ACM International Collegiate Programming Contest 2003/04
Russian Teams Meeting in Petrozavodsk, Summer 2003

KOTEHOK’s Contest, Sunday, August 31, 2003

Problem F. Unstable Systems
Input file: unstable.in

Output file: unstable.out

Time limit: 6 seconds
Memory limit: 64 megabytes

Of course you know that some operating systems are not stable. Sasha learnt it only few days ago.
Now there are very bad days of his life. He is an adminstrator of the network of n computers with
different versions of such systems. Each computer is a workstation which is usually used to run a single
program. But the programs often crash with a message “The system is busy or unstable”. Sasha
has determined some unsafety value corresponding to the frequency of program crash for each program on
each workstation (the larger values correspond to more often crashes). Now he plans to arrange programs
in such a way that the maximal unsafety value of all workstations will become minimal possible (because
crashes slow down all the work!). Help him!

Input
The first line of the input file contains the number of workstations n (1 ≤ n ≤ 500) which is equal

to number of programs. The next n lines contain n numbers each — j-th number of i-th line contains
the unsafety value for a program j on i-th computer. All numbers do not exceed 106 by their absolute
values.

Output
Write the maximal unsafety value on the first line. Then output n lines each corresponding to one

program in format i j — i-th computer must run j-th program.

Example
unstable.in unstable.out

2

1 3

4 5

4

1 2

2 1

Page 7 of 9

ACM International Collegiate Programming Contest 2003/04
Russian Teams Meeting in Petrozavodsk, Summer 2003

KOTEHOK’s Contest, Sunday, August 31, 2003

Problem G. Number Container
Input file: contain.in

Output file: contain.out

Time limit: 0.5 seconds
Memory limit: 64 megabytes

Consider all MN N -digit numbers in the scale of notation with base M (leading zeros are allowed).
Your task is to generate the lexicographically smallest string of digits of minimal possible length which
will contain all these numbers as substrings if this string is infinitely appended to itself.

Input
There are only two integers in input file: M andN . It is guaranteed that 2 ≤ M ≤ 10 and 1 ≤ N ≤ 10.

It is always true that MN ≤ 1000000.

Output
Output the lexcographically smallest string of minimal length which solves this task.

Example
contain.in contain.out

2 2 0011

Page 8 of 9

ACM International Collegiate Programming Contest 2003/04
Russian Teams Meeting in Petrozavodsk, Summer 2003

KOTEHOK’s Contest, Sunday, August 31, 2003

Problem H. Reversive Inversions II
Input file: invers.in

Output file: invers.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Inversion table for a permutation P of numbers {1, 2, . . . , N} is the table A = (Ai)1≤i≤N which maps
each i = Pj into the number of indices j′ such that j′ ≤ j but Pj′ > Pj = i.

Given an inversion table for a permutation P , calculate the inversion table for the inverse permutation
P−1.

Input
File consists only of N integer numbers, delimited by spaces and newline characters, that form the

inversion table of a permutation. You may assume that 1 ≤ N ≤ 262144.

Output
Output N integer numbers separated by single spaces — inversion table for the inverse permutation.

Leave no trailing spaces at the end of the single line of output.
If there are several possible answers, output any of them. If there are no answers, output the first N

primes instead.

Example
invers.in invers.out

5 0 1 3 2 1 0 1 5 1 3 2 0 0

Page 9 of 9

