
Problem: Snake
Input file: standard input

Output file: standard output

Time limit: 2 seconds for 10 moves
Memory limit: 64 megabytes

Many people can remember the game called "Snake which is widely known in chinese game consoles as
well as on cell phones some well-known manufacturer. In this problem you are to write a program which
plays this game,

The game field is a matrix of 30 × 30 cells. Every cell can contain a part of one of two snakes or an
apple. Every snake occupies several cells, numbered starting from one. At every moves snake chooses
some moving direction. After that first cell of the snake moves in that direction and every other cell
is moved to the place of previous cell. If the first cell of the snake moves to a cell with an apple, snake
becomes one cell longer. New cell is added to the place, where the last cell of the snake was before moving.

Apples appear on the field randomly, approximately one apple for 10 moves (here move is a move of one
snake and response move of the other).

Initially every snake consists of one cell and resides in the cell (4, 4) or (25, 25) (rows and columns are
numbered from zero).

If a snake moves into a cell occupied by any snake, or outside the field, that snake is considered a loser.
If after snake’s move it length reaches 250 cells, the snake is considered a winner.

Input
You will receive current field state before every move in stdin. You will receive 30 lines with 30 numbers in
each. After that you will receive an empty line. Every number aij corresponds to one cell. If 0 < aij ≤ 250,
then there’s your snake’s cell number aij in that cell. If aij < 0, then there’s your opponent snake’s cell
with number −aij in that cell. If aij = 1000, then there’s an apple in that cell. Otherwise aij = 0 and the
cell is empty.

Output
You should output one direction for each move. Direction is denoted by one letter: U — up, L — left, D
— down, R — right. Output an empty line after each move. Don’t forget to flush output buffer after each
move. See sample programs for further clarification.

Page 1 of 4



Examples
standard input

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3 2 1 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6 -5 -4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7 -8 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

standard output

R

In this example moving snake will become one cell longer after move.

Page 2 of 4



Sample program for C++:

#include <iostream>

#include <fstream>

#include <ctime>

#include <cstdlib>

using namespace std;

const int SZ = 30;

int field[SZ][SZ];

const char dir[5] = "LURD";

int main()

{

srand((unsigned)time(NULL));

int i, j;

while (1)

{

for (i = 0; i < SZ; i++)

{

for (j = 0; j < SZ; j++)

{

scanf("%d", &field[i][j]);

}

}

printf("%c\n\n", dir[rand() % 4]);

fflush(stdout);

}

return 0;

}

Page 3 of 4



Sample program for Pascal:

const SZ = 30;

const dir : array[0..3] of char = (’L’, ’R’, ’U’, ’D’);

var field : array[1..SZ, 1..SZ] of integer;

i, j : integer;

begin

randomize;

while true do begin

for i := 1 to SZ do begin

for j := 1 to SZ do begin

read(field[i, j]);

end;

end;

writeln(dir[trunc(random() * 1000) mod 4]);

writeln;

flush(output);

end;

end.

Page 4 of 4


