Problem: Filler

Input file: standard input
Output file: standard output
Time limit: 10 seconds for 10 moves
Memory limit: 64 megabytes

In this problem you are to play well-known game "Filler". In this case we will consider a field of size 20 x 20.
Every cell of the field initially is painted in one of 10 colors. Initially first player owns the cell in top-left
corner and all cells, which are accessible from top-left by moving to adjacent cells of the same color. Here
two cells are considered adjacent if they share a side. Second player owns the cell in bottom-right corner
(and all cells accessible from there in the same way).

At every move player can choose any color (except the color of opponent’s source cell, top-left or
bottom-right respectively) and paint all cells he owns into that color. After that player begins to own all
cells which are accessible by moves to adjacent cells of the same color from his initial cell. The game ends
when every cell is owned by one of the players or after 400 moves (which os these happens earlier).

Input

Before every move your program will receive current field state in standard input. You will get 20 lines
with 20 numbers in each. After that you will receive an empty line. Every number a;; denotes the color
of one cell (colors are numbered from 1 to 10). The field will be rotated in such way, that your initial cell
will be top-left cell (with coordinates (0,0)).

Output

At every move you should output the number of ther color, in which you want to paint your cells. Output
an empty line after each move. Don’t forget to flush the output buffer after each move. See sample
programs for further clarification.

Also please note that your program should not terminate by itself. You can make a dummy read operation
after last move to hang without consuming CPU time.

Example clarifies output for one move.

Page 1 of 4



Examples

standard input

4928716417629477286
1255151567545 76356
13121722886831016 101
416671355235986155

109261049836783232091
4551055358799 7135
1168734103107 761106
101051931248971936
328710439125146410
7991325177746¢65
8510955773766 8 10
1081018856825336739
103437921108794231
61112425751876595
7103 6462621084101 10655
49461710713210831989
8§1088232176276581103
1079351041010895866487 106
8477153483310 10246 2
1593610942187 73537

O W N~ ON
S OO O OO O

N

PP OO 00N OO0 ©O = O PO 0
© © OO 00 © 01O N OOk~ N WOoWwEFH ON
0 O N 0N 0 -

©

567
6 6 3

standard output

Page 2 of 4




Sample program for C++:

#include <iostream>
#include <fstream>
#include <ctime>

#include <cstdlib>

using namespace std;

const int SZ = 20;
int field[SZ][SZ];

int main()

{
srand ((unsigned) time (NULL)) ;
int i, j;
while (1)
{
for (i = 0; i < SZ; i++)
{
for (j = 0; j < SZ; j++)
{
scanf ("%d", &field[i][j1);
}
}
int newc = rand() % 10 + 1;
while (newc == field[SZ - 1][SZ - 1]) newc = rand() % 10 + 1;
printf ("%d\n\n", newc);
fflush(stdout) ;
}
// to prevent early program termination
scanf ("%d", &i);
return O;
}

Page 3 of 4



Sample program for Pascal:

const SZ = 20;

var field : arrayl[l..SZ, 1..S8Z] of integer;

i, j : integer;
newc : integer;
begin

randomize;

while true do begin

for i := 1 to SZ do begin
for j := 1 to SZ do begin
read(field[i, j1);

end;
end;

newc := trunc(random() * 1000) mod 10 + 1;
while (newc = field[SZ, SZ]) do newc := trunc(random() * 1000) mod 10 + 1;

writeln(newc);
writeln;
flush(output) ;
end;
read(i);
end.

Page 4 of 4



