
Problem: Filler
Input file: standard input

Output file: standard output

Time limit: 10 seconds for 10 moves
Memory limit: 64 megabytes

In this problem you are to play well-known game "Filler". In this case we will consider a field of size 20×20.
Every cell of the field initially is painted in one of 10 colors. Initially first player owns the cell in top-left
corner and all cells, which are accessible from top-left by moving to adjacent cells of the same color. Here
two cells are considered adjacent if they share a side. Second player owns the cell in bottom-right corner
(and all cells accessible from there in the same way).

At every move player can choose any color (except the color of opponent’s source cell, top-left or
bottom-right respectively) and paint all cells he owns into that color. After that player begins to own all
cells which are accessible by moves to adjacent cells of the same color from his initial cell. The game ends
when every cell is owned by one of the players or after 400 moves (which os these happens earlier).

Input
Before every move your program will receive current field state in standard input. You will get 20 lines
with 20 numbers in each. After that you will receive an empty line. Every number aij denotes the color
of one cell (colors are numbered from 1 to 10). The field will be rotated in such way, that your initial cell
will be top-left cell (with coordinates (0, 0)).

Output
At every move you should output the number of ther color, in which you want to paint your cells. Output
an empty line after each move. Don’t forget to flush the output buffer after each move. See sample
programs for further clarification.

Also please note that your program should not terminate by itself. You can make a dummy read operation
after last move to hang without consuming CPU time.

Example clarifies output for one move.

Page 1 of 4



Examples
standard input

8 2 4 9 2 8 7 1 6 4 1 7 6 2 9 4 7 7 8 6

6 6 1 2 5 5 1 5 1 5 6 7 5 4 5 7 6 3 5 6

4 1 1 3 1 2 1 7 2 2 8 8 6 8 3 10 1 6 10 1

9 8 4 1 6 6 7 1 3 5 5 2 3 5 9 8 6 1 5 5

1 3 10 9 2 6 10 4 9 8 3 6 7 8 3 2 3 2 9 1

9 7 2 8 4 5 5 10 5 5 3 5 8 7 9 9 7 1 3 5

5 1 6 5 1 1 6 8 7 3 4 10 3 10 7 7 6 1 10 6

6 8 1 6 10 10 5 1 9 3 1 2 4 8 9 7 1 9 3 6

5 5 7 6 3 2 8 7 10 4 3 9 1 2 5 1 4 6 4 10

7 7 3 6 7 9 9 1 3 2 5 1 7 7 7 4 6 6 5 1

8 6 8 4 8 5 10 9 5 5 7 7 3 7 6 6 8 10 8 3

5 5 10 8 10 1 8 8 5 6 8 2 5 3 3 6 7 9 2 2

6 9 10 3 4 3 7 9 2 1 10 8 7 9 4 2 3 1 8 9

4 8 6 1 1 1 2 4 2 5 7 5 1 8 7 6 5 9 5 2

4 6 7 10 3 6 4 6 2 6 2 10 8 4 10 1 10 6 5 5

4 9 4 9 4 6 1 7 10 7 1 3 2 10 8 3 1 9 8 9

6 9 8 10 8 8 2 3 2 1 7 6 2 7 6 5 8 1 10 3

10 7 9 3 5 10 4 10 10 8 9 5 8 6 6 4 8 7 10 6

8 4 7 7 1 5 3 4 8 3 3 10 5 6 7 10 2 4 6 2

1 5 9 3 6 10 9 4 2 1 8 7 6 6 3 7 3 5 3 7

standard output

6

Page 2 of 4



Sample program for C++:

#include <iostream>

#include <fstream>

#include <ctime>

#include <cstdlib>

using namespace std;

const int SZ = 20;

int field[SZ][SZ];

int main()

{

srand((unsigned)time(NULL));

int i, j;

while (1)

{

for (i = 0; i < SZ; i++)

{

for (j = 0; j < SZ; j++)

{

scanf("%d", &field[i][j]);

}

}

int newc = rand() % 10 + 1;

while (newc == field[SZ - 1][SZ - 1]) newc = rand() % 10 + 1;

printf("%d\n\n", newc);

fflush(stdout);

}

// to prevent early program termination

scanf("%d", &i);

return 0;

}

Page 3 of 4



Sample program for Pascal:

const SZ = 20;

var field : array[1..SZ, 1..SZ] of integer;

i, j : integer;

newc : integer;

begin

randomize;

while true do begin

for i := 1 to SZ do begin

for j := 1 to SZ do begin

read(field[i, j]);

end;

end;

newc := trunc(random() * 1000) mod 10 + 1;

while (newc = field[SZ, SZ]) do newc := trunc(random() * 1000) mod 10 + 1;

writeln(newc);

writeln;

flush(output);

end;

read(i);

end.

Page 4 of 4


